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Abstract

Based on the theory of curved beams and the BiotÐSavart law\ a new theoretical model for magnetoelastic
bending and buckling of superconducting toroidal _eld coils is developed and corroborated numerically[ In
contrast to the existing models\ this model incorporates in!plane deformation of the coil[ A semi!analytical
approach is used to obtain the solution to the coupled problem[ In order to validate the model and associated
solution method\ the experiment of Miya et al[ "0871# is modeled[ The theoretical predictions of the critical
current of coils with none or one pin support are shown to be in excellent agreement with the published
experimental data[ It is also shown that the in!plane deformation has a signi_cant in~uence on the critical
current[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Superconducting coils are used in many high energy devices such as thermonuclear magnetic fusion
reactors\ magnetic energy storage devices "SMES#\ magnetically levitated vehicles "Maglev#\ and
superconducting generators "Moon\ 0873#[ The dramatic rise of the magnetic _eld intensity
achieved by superconducting magnets over conventional electromagnets has increased the ratio of
magnetic forces to the load!carrying capacity and thus\ raised concerns on the structural integrity[
Minimization of the structural supports due to the stringent cooling requirement of super!
conducting magnets may further compromise the structural integrity[ Thus\ structural stability of
superconducting magnets and associated supporting structures has become one of the most impor!
tant design considerations for these devices[

In a Tokamak fusion reactor\ a set of discrete superconducting coils is used to generate a toroidal

� Corresponding author[
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Fig[ 0[ Schematic drawing of toroidal _eld coils for fusion reactor[

magnetic _eld for plasma con_nement "Fig[ 0#[ Magnetic forces are generated due to the mutual
interaction between the adjacent superconducting magnets[ Experimental studies suggest that when
the intensity of the superconducting current is small\ the coil bends in its own plane[ As the current
becomes larger\ a transverse bending deformation may occur[ When the current reaches a critical
value\ the coil becomes structurally unstable[ This phenomenon is referred to as the magnetoelastic
instability and the critical value of the current may limit the design and safe operation of the fusion
reactor[ It is noted that this kind of out!of!plane bending may also occur when these exists a small
misalignment of coils in the magnet system[

Experimental evidence of magnetoelastic instability of toroidal _eld coils was _rst demonstrated
by Moon "0865#[ Moon also developed an analytical model for the magnetoelastic instability based
on a dynamic method "Moon\ 0865^ Moon and Swanson\ 0866#\ in which the critical current is
determined when the natural frequency of lateral vibration of a coil becomes zero[ Recently\ Geiger
and Jungst "0880# used the same method to investigate the TESPE toroidal magnets system\ a
torus with six D!shape superconducting coils of technologically relevant size and construction[ A
major limitation of this method is that it depends on the values of the natural frequency of the coil
which are not easy to determine in practice for a large superconducting coil set in a full scale torus[
Miya et al[ "0879\ 0871# developed a _nite element model to study the magnetoelastic instability
of superconducting toroidal _eld coils[ They also conducted an experimental study with a three!
coil partial torus and the magnetoelastic buckling current was predicted based on the parameters
of the experimental device[ However\ their prediction of the critical current was not in good
agreement with their experimental results[ It should be noted that neither of the aforementioned
analytical models included the in!plane extension and bending deformation[ To date\ it is still
unclear how the in!plane deformation of the coil a}ects the critical current for magnetoelastic
instability[ We shall attempt in this paper to address this important question[

In what follows\ we present a theoretical model for magnetoelastic interaction of super!
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conducting toroidal _eld coils based on the theory of curved beams and BiotÐSavart law[ All
possible modes of deformation "axial extension\ in!plane bending\ out!of!plane bending and
torsion# of the coil are included in the model[ A semi!analytical solution method is developed and
described in detail[ According to the nonlinear characteristic of magnetoelasticity\ the critical
current of magnetoelastic instability is predicted by the Southwell plot of the maximum transverse
displacement in the out!of!plane of the coil[ In order to ascertain the validation of the model\ the
experiment by Miya and his coworkers "0871# is modeled and numerical results are shown to be
in excellent agreement with the experimental results[

1[ Mechanics of coil

Consider a three!coil superconducting partial torus which consists of three D!shaped coils
"shown in Fig[ 1#[ The straight part of each coil is clamped\ whereas the circular arc part is free\
pin supported or clamped at some discrete locations[ The current carrying coil m is placed
symmetrically between two _xed current carrying coils l and r "here {{m||\ {{l|| and {{r|| represent
the middle\ left hand side and right hand side\ respectively#[ The coils are made by winding
superconducting tapes of NbTi or Nb2Sn thin multi_laments potted in copper matrix[

Before proceeding with the formulation for magnetic buckling of superconducting coils\ we _rst
make the following assumptions] "0# the coil is isotropic and homogeneous with equivalent elastic
moduli^ "1# the magnetic _eld arising from the current is constant^ "2# the thickness of the coil is
constant^ "3# the current is uniformly distributed across the cross!section of the coil^ "4# the
distribution of the magnetic _eld in the coil can be treated as that of a normal conductor^ "5# the
cross!sectional dimension of the coil is much smaller than the distance between two adjacent coils[
Although superconducting currents ~ow only on or near the surface of superconducting _laments\
assumptions "3# and "4# may be reasonable since the coil is made of multi_laments which are more
or less evenly distributed[

It is convenient to establish the basic equations of the problem in a local curved coordinate
system ojhz\ in which j is along the circumferential axis of the coil and normal to the cross!section
of the coil whereas h and z lie on the plane of the cross!section of the coil as shown in Fig[ 1[
Denoting the internal force vector P"j# � ðNj"j#\ Qh"j#\ Qz"j#\ Mj"j#\ Mh"j#\ Mz"j#ŁT and magnetic
force vector F"j# � ð−qj\ −qh\ −qz\ −cj\ −ch\ −czŁT\ the equilibrium equations for the center coil
can be represented in matrix form]

dP"j#
dj

� AP"j#¦F"j# "0#

in which

A �

K

H

H

H

H

H

H
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k
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Fig[ 1[ Three!coil superconducting partial torus[

Taking the coupling e}ect among the axial extension\ bending and torsion of the coil into
account\ we write the geometrical equations with constitutive relation in the following form]

du"j#
dj

¦
w"j#
R

�
Nj

EF
"2#

d1v"j#

dj1
−

f"j#
R

�
Mz

EJz

"3#
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d1w"j#

dj1
−

1
R

du"j#
dj

−
w"j#
R

� −
Mh

EJh

"4#

df"j#
dj

¦
0
R

dv"j#
dj

�
Mj

K
"5#

in which\ u"j#\ v"j# and w"j# are components of displacement vector U"j# in the j!\ h! and z!
direction\ respectively^ F is the cross!section of the coil^ Jh and Jz are the inertial moments of the
section about the h! and z!axis\ respectively^ E is the equivalent axial Young|s modulus of the
superconducting coil^ G is the equivalent shear elastic constant[ The equivalent elastic constant E
and G can be determined by the theory of composite materials from the elastic constants of the
constituents\ namely\ superconducting of the superconducting composite _laments and copper
matrix "Miya et al[\ 0879\ 0871#[ In the above equation\ K � Gk is the torsional rigidity of the
section about the j!axis where k can be determined as the following]

k �
b2h
2

−
53b3

p4
s
�

m�0\2\3\[[[

0

m4
tanh

mph
1b

"6#

where b and h are the width and height of the cross!section of the coil\ respectively[
We recall that the coil is assumed to be clamped along the straight part as in the physical

experiments "Miya et al[\ 0879#[ Denoting the two intersections between the straight part and the
circular part by j � ja and j � jb\ boundary conditions for the circular part of the coil can be
written as

j � ja and j � jb] u"j# � 9\ v"j# � 9\ w"j# � 9 "7#

f"j# � 9\
dv"j#
dj

� 9\
dw"j#

dj
� 9 "8#

Equations "0# and "2#Ð"5# with 01 boundary conditions\ "7# and "8#\ constitute the boundary!
value problem for the coil system with no supports in the arc[

In the case when there is a support at the center of the arc "i[e[ g � 079>#\ it su.ces to consider
only a half of the arc due to the symmetry[ For a clamped support\ we need to treat the coil section
which is clamped at both ends "j � a and j � 079># and the boundary conditions are given by "7#
and "8#[ For a pin supported at j � 079>[ The boundary conditions at the simply supported and
are given by

j � 079>] U"j# � 9\ f"j# � 9\
dw"j#

dj
� 9\ Mz"j# � 9 "09#

2[ Magnetic forces

We shall determine the magnetic body forces and moments on the centerline of the coil m due
to calculating the magnetic _eld arising from the two outer coils with the aid of the BiotÐSavart
law[ Consider two arbitrary points on the cross!sections Fl and Fm of the coils l and m\ respectively[
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Their position vectors relative to the center ol and om of the sections are denoted by rl and rm\
respectively[ From the BiotÐSavart law\ the magnetic _eld on coil m by coil l can be written as

Bl"rm# �
mIl

3p gsl

drl×"rm
l ¦rm−rl#

=rm
l ¦rm−rl =2

"00#

and the Lorentz force and moment\ respectively\ become

ql"rm# � Iej×Bl"rm#

�
mIlIm

3pFlFm gFl
gsl
gFm

ej×$
drl×"rm

l ¦rm−rl#

=rm
l ¦rm−rl =2 % dFl dFm "01#

and

cl"rm# �
mIlIm

3pFlFm gFl
gsl
gFm

rm×$ej×
drl×"rm

l ¦rm−rl#

=rm
l ¦rm−rl =2 % dFl dFm "02#

where rl is the position vector of coil l and rm
l is the relative position vector of the centerlines of

coils l and m[ Since

gFl

rl dFl � 9\ gFm

rm dFm � 9 "03#

and ej is normal to rm\ we can show that cl"rm# 0 9[ Since =rl = ð =rm
l = and =rm = ð =rm

l = from the
assumption "5# mentioned above\ "01# can be expressed as

ql"rm# �
mIlIm

3p gsl

ej×$
drl×rm

l

"rm
l #2 % "04#

Taking the same consideration for coil r\ we obtain the total Lorentz force acting on coil m by
coils l and r as

q"rm# �
mIlIm

3p gsl

ej×$
drl×rm

l

"rm
l #2 %¦

mIrIm

3p gsr

ej×$
drr×rm

r

"rm
r #2 % "05#

It should be noted that\ when calculating the magnetic force by "05#\ rl\ rr\ rm
l and rm

r should be
written in the local coordinate system[ Moreover\ we must also take into account the e}ect of
deformation of coil m on the magnetic force[ This can be accomplished by writing the relative
position vector as follows]

rm
l � rm¦U"j#−rl\ rm

r � rm¦U"j#−rr "06#
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Note that the magnetical force and the deformation of coil m are thus\ mutually coupled^ that is\
the magnetic force e}ects the deformation of coil m and\ conversely\ the deformation of the coil
in~uences the magnetic force[ Consequently\ the basic equations of the problem are inherently
nonlinear\ even when each subsystem "mechanical and electromagnetic# is considered to be linear[

Since the D!shape coil in torus are of the same geometrical size and placed symmetrically\ and
carrying the same current "i[e[\ Il � Im � Ir � I\ ul � ur#\ there exists a trivial solution to eqns "0#
and "2#Ð"5# for out!of!plane bending[ Consider an arbitrary pair of symmetry points on coil l and
r[ When ul � ur and v"j# 0 9\ we have

"rm
l #j �"rm

r #j\ "rm
l #h � −"rm

r #h\ "rm
l #z �"rm

r #z "07#

d"rl#j � d"rr#j\ d"rl#h � −d"rr#h\ d"rl#z � d"rr#z "08#

and rm
l � rm

r [ Therefore\ the expression "05# can be rewritten as

q"rm# �
mI1

3p gsl

ej×$
drl×rm

l

"rm
l #2

¦
drr×rm

r

"rm
r #2 %

�
mI1

3p gsl

1

"rm
l #2

ð"rm
l #z d"rl#j−"rm

l #j d"rl#zŁez "19#

which shows that there is no transverse magnetic force acting on coil m when the outer coils are
symmetrically placed and v"j# 0 9[ Thus\ a trivial solution always exists for out!of!plane de~ection[
However\ since the governing equations are nonlinear\ it is possible that a nontrivial solution for
transverse bending deformation may exist when the applied current approaches a critical value[
We shall pay special attention to this non!trivial solution to examine the buckling phenomenon[

3[ Solution method

A semi!analytical and semi!numerical method is used here to obtain a solution of the coil for a
given magnetic force[ We _rst obtain exact homogeneous solutions to the basic equations in closed
form[ The _nite di}erence method is then used to obtain the solution to the nonhomogeneous
problem[ Finally\ the integral constants are determined by the initial parameter method[ Once the
solutions\ which are based on a set of assumed initial displacement of the coil\ to eqn "0# and "2#Ð
"5# for a given current are obtained\ an iterative method can then be used to _nd the true solution
for a given current since the problem is coupled[

3[0[ Homo`eneous solution

The exact homogeneous solution to "0#\ denoted by P� � ðN�j"j#\ Q�h"j#\
Q�z"j#\ M�j"j#\ M�h"j#\ M�z"j#ŁT\ can be expressed in the following form]
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P�"j# � T00"j#C0 "10#

in which C0 � ðC0\ C1\ C2\ C3\ C4\ C5ŁT is an unknown constant vector\ and

T00 �

K
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H
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j
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j
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R
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l

"11#

The exact homogeneous solution to "2#Ð"5#\ noted by C�"j# � ðu�\ f�\ v�\ dv�:dj\ w�\ dw�:djŁT\
can be written in the following form]

C�"j# � ðT10"j#\ T11"j#Ł $
C0

C1% "12#

where C1 � ðC6\ C7\ C8\ C09\ C00\ C01ŁT is an unknown constant vector\ and

T10"j# �

K

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H
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j

R
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j

R
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j

R
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j

R
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K
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j
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j
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R1
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9
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j
¦
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R
¦
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T11"j# �

K

H

H

H

H

H

H

H

H

H

H

H
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H

H

H

H
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j

R
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R
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j

R
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R
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R
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j

R
9 9 9

9
0
R

cos
j

R
−
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in which

D0 �
1

EFR
¦

R
EJh

^ D1 �
0

ERJz

¦
0

KR
"15#

t0 �
D0R

1

1
−

R
EF

\ t1 �
D1R

1

1
−

R
EJz

"16#

t0s �
D0Rj

1
sin

j

R
\ t0c �

D0Rj

1
cos

j

R
"17#

t1s �
D1Rj

1
sin

j

R
\ t1c �

D1Rj

1
cos

j

R
"18#

Solution "11# and "13# can be combined and written in the following form]

F�"j# � TC "29#

where

F�"j# � 6
P�"j#

C�"j#7 T"j# � $
T00"j# T01"j#

T10"j# T11"j#% C � 6
C0

C17 "20#

In the above\ T01"j# is a 5×5 null matrix[ Equation "2# represents the exact solution to the
homogeneous problem "0# and "2#Ð"5# in closed form[

3[1[ Inhomo`eneous solutions

The _nite di}erence method is used to obtain the inhomogeneous solution to eqns "0# and "2#Ð"5#
for an arbitrary applied load F"j#[ The inhomogeneous solution is then added to the homogeneous
solution given by "29#\ and the integral constants are determined by applying the boundary and
support conditions[
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Let us divide the coil m into s element such that

ja ³ j0 ³ j1 ³ = = = ³ js−0 ³ js � jb "21#

The di}erential eqns "0# and "2#Ð"5# can be transfered into algebraic ones for each element[ We
can get the values of P"j# and C"j# on each node by resolving these algebraic equations[ These
inhomogeneous solutions can be written in the following form]

FÞ "jj# � 6
PÞ"jj#

CÞ "jj#7\ j � 0\ 1\ [ [ [ \ s "22#

The complete solution to eqn "0# and eqns "2#Ð"5# can then be written as

F"j# � F�"j#¦FÞ "j# � T"j#C¦FÞ "j# "23#

3[2[ The initial parameter method

Here\ we shall adopt the initial parameter method "Vlasov and Leontev\ 0855# to determine the
vector C which consists of 01 unknown constants for the single arc circular coil[ Substituting the
boundary conditions at j � ja into eqn "23#\ we can express C as

C � ðT"ja#Ł−0F"ja#−ðT"ja#Ł−0FÞ "ja# "24#

where F"ja# is the initial parameter matrix[ The solution "23# can then be expressed in terms of
the initial parameter as follows]

C � G"j#F"ja#−G"j#FÞ "ja#¦FÞ "j# "25#

in which

G"j# � T"j#T−0"ja# "26#

It is noted that from the twelve elements of the initial parameter matrix F"ja#\ six elements are
given by the boundary conditions at j � ja and the rest can be determined by the boundary
conditions at j � jb[

3[3[ Iterative method

So far\ the solution procedure is based on the assumption that the magnetic forces are known a
priori[ However\ magnetic forces acting on coil m depends on the current con_guration of the coil[
Consequently\ magnetic forces are not known until the deformation of the coil is determined[ In
order to treat this coupled problem\ we employ an iterative technique] we _rst calculate the
magnetic force q � qn by eqn "05# for a given displacement U � Un^ we then calculate a new
displacement U � Un¦0 for the magnetic force qn by using the procedure described above until the
solution converges\ i[e[\ the condition

=Un¦0−Un = ³ d "27#

is satis_ed\ where 9 ³ d ð 0 is a prescribed tolerance\ and n denotes the number of iterations[
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4[ Numerical results

In order to con_rm the validity of our theoretical model and the semi!analytical solution method\
the experiment by Miya and his coworkers "0871# is modeled here[ Material and geometrical
parameters used in the calculation are as follows] E � 1[6×0909 Pa^ G � 2[3×098 Pa^
ur � ul � 11[4>^ h � 9[5 mm^ a � 89 mm^ b � 8 mm^ and c � 39 mm[ We consider three di}erent
support conditions] no support^ a pin support^ and a clamp support in the circular arc section[
Assuming that symmetrically placed supports would perform better than unsymmetrically placed
ones\ we consider only the former in this study[ That is\ in the case when there is a support in the
arc section\ the support is located on the y axis "i[e[g � 079>\ as shown in Fig[ 1#[

Distribution of the three displacement and three internal force components in the coil can be
obtained by the present model[ For example\ distribution of the three displacement components
in the coil with a pin support is shown in Fig[ 2[ Due to the symmetry of the geometry and the
magnetic _eld in the middle coil about the yÐoÐz plane\ displacement and internal force distributions
exhibit the same symmetry as expected[ As shown in the _gure\ the transverse displacement of the
coil is much larger than the in!plane ones[ Therefore\ we shall pay close attention to the transverse
deformation which renders the coil system unsymmetric[ It is reminded\ however\ that we cannot
neglect the e}ect of the in!plane deformation as will be shown below[

Calculation of the transverse de~ection is carried out until the superconducting current reaches
a critical value[ Note that there is a notable increase as the applied current approaches the critical
one[ The maximum transverse de~ection is plotted as a function of the applied current for three
cases in Fig[ 3[ From these curves\ we con_rm that the relationship between the deformation with

Fig[ 2[ Distribution of the three displacement components in the coil with one pin support "I � 099 A:turn#[



J[S[ Lee\ X[J[ Zhen` : International Journal of Solids and Structures 25 "0888# 1016Ð10301027

Fig[ 3[ The maximum transverse de~ection vs the applied current[

the applied current is nonlinear[ As shown in the _gure\ the coil _rst buckles\ then bends nonlinearly
varying with the square of the applied current\ and _nally snaps or losses stability[ This charac!
teristic of the nonlinear magnetoelastic interaction is similar to that of an axially compressed
column with nonlinear geometrical deformation in which the buckling state is stable[ Here\ the
buckling mode is the same as the deformation con_guration as shown in Fig[ 2 for one pin support[
Although this deformation behavior was observed experimentally "Moon\ 0865\ 0868^ Miya et al[\
0871#\ no theoretical models have been able to simulate this behavior to date[

In order to determine the critical current\ the Southwell plots are made for the three cases in
Fig[ 4[ The slope of this plot could give the critical current[ From Fig[ 4\ we _nd that the critical
current of the coil without support is much lower than those of the coils with a support[ It is shown
that the critical current for the coil with a clamped support is much higher "almost twice as large#
than that of the coil with a pin support[

Comparisons between our theoretical predictions and the existing results\ both theoretical
and experimental\ for the critical values of magnetoelastic snapping current of the three!coil
superconducting partial torus are summarized in Table 0[ The values obtained from our analysis
are slightly higher than experimental data with a relative error 2[03) for the coil with no support
and 9[24) for the coil with a pin support[ It is reasonable to argue that theoretical predictions of
the critical current are higher than the corresponding experimental values because small lateral
misalignments are inevitable in physical tests\ which tend to lower the critical values "Zhou and
Miya\ 0886#[ The theoretical results of Miya et al[ "0879\ 0871# are also listed for comparison to
ascertain the importance of the e}ect of the in!plane deformation on the critical current[ Since the
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Fig[ 4[ Southwell plots for critical current[

Table 0
Comparison of critical current "Icr A:turn#

Three coil torus Experiment Theoretical results "error in )#
"Miya et al[#

Miya et al[ Present analysis

No support 36[7 26 "−11[5# 38[2 "2[03#
One pin support 014[9 097 "−02[5# 014[33 "9[24#
One clamped support NA NA 123[91 "NA#

in!plane deformation was neglected in their model\ their predicted values are considerably lower
than the experimental data with a relative error of 11[5) for the coil with no support and 02[5)
for the coil with a pin support[ Hence\ we can state that the e}ect of in!plane deformation on the
critical current is signi_cant even though magnitude of the in!plane deformation is much smaller
than that of the out!of!plane deformation[
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5[ Conclusions

Magnetoelastic behavior of a superconducting three!coil partial torus with di}erent support
conditions were considered in this paper[ With the aid of the BiotÐSavart law and the theory of
curved beams\ we presented a new theoretical model which can describe the in!plane and out!of!
plane deformation of the coil as well as the internal forces in the coil[ A semi!analytical solution
method was developed combining an exact closed!form solution\ the _nite di}erence method\ the
initial parameter method and the iterative technique to solve the coupled nonlinear problem[ The
model is shown to be capable of predicting the deformation process of the coil as observed by
existing experiments for the _rst time[ The critical currents of the coil obtained in this paper are in
better agreement with the existing experimental data than the hitherto reported here are better
founded[
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